MRI Notation and Terminology#

The following is the standardized notation used in this book:

Notation

Definition

SI Units

\(\vec{r} = [x, y, z]^T\)

position in space

[m]

\(\vec{B}(\vec{r},t)\)

Magnetic field

[T]

\(\bar{\gamma}\)

gyromagnetic ratio

[Hz/T]

\(B_0\)

Main magnetic field

[T]

\(B_1^+(\vec{r},t)\)

RF transmit magnetic field

[T]

\(B_1^-(\vec{r},t)\)

RF receive magnetic field

[T]

\(\vec{G}(t) = [G_X(t), G_Y(t), G_Z(t)]^T \)

magnetic field gradients

[T/m]

\(\vec{M}(\vec{r},t)\)

Net Magnetization

[T]

\(M_{XY}(\vec{r}, t) = M_X(\vec{r}, t) + i M_Y(\vec{r}, t)\)

transverse magnetization

[T]

\(M_0(\vec{r})\)

Equilibrium magnetization

[T]

\(T_1(\vec{r}), T_2(\vec{r}), T_2^*(\vec{r})\)

relaxation rates

[s]

Definitions#

Position in space#

\[\begin{split}\vec{r} = \begin{bmatrix} x\\ y \\ z \end{bmatrix}\end{split}\]

Net magnetization#

\[\begin{split}\vec{M} = \begin{bmatrix} M_X \\ M_Y \\ M_Z \end{bmatrix}\end{split}\]

It can vary over space, \(\vec{r} = [x,y,z]^T\) and time, \(t\):

\[\begin{split}\vec{M}(\vec{r},t) = \begin{bmatrix} M_X(\vec{r},t) \\ M_Y(\vec{r},t) \\ M_Z(\vec{r},t) \end{bmatrix}\end{split}\]

Shorthand for transverse magnetization using complex numbers

\[M_{XY}(\vec{r},t) = M_X(\vec{r},t) + i M_Y(\vec{r},t)\]

Magnetic field#

\[\begin{split}\vec{B} = \begin{bmatrix} B_X \\ B_Y \\ B_Z \end{bmatrix}\end{split}\]

It can vary over space, \(\vec{r}\) and time, \(t\):

\[\begin{split}\vec{B}(\vec{r},t) = \begin{bmatrix} B_X(\vec{r},t) \\ B_Y(\vec{r},t) \\ B_Z(\vec{r},t) \end{bmatrix}\end{split}\]

Acronyms#

MRI is full of jargon and acronyms, which can be intimidating and impede understanding. Luckily, there are a couple good resources to help you out:

Radiopaedia - general list: https://radiopaedia.org/articles/mri-pulse-sequence-abbreviations

MR-TIP - structured lists comparing acronyms across vendors

Glossary#

RF

Gradients

Spins

Excitation

Polarization

Voxel

Gradient Echo

Spin Echo